(B) Course information in English

General course mitormation.							
Course title:	Soi	l Mechanics I	Course cod	e:	CE05_C	G04	
Credits:	5		Work load		125		
			(hours):				
Course level:		Undergraduate		Gradu	ate 🗆]	
Course type:		Mandatory	X	Selectiv	ve		
Course category:		Basic 🗵	3	Orient	ation		
Semester:	5		Hours per v	veek:	4		
Course objectives (capabilities pursued and learning results):							

General course information:

The students study: the fundamental problems and practical applications in Geotechnical Engineering, the natural properties of soils, the types of laboratory and field testing, the computation of stresses, the stress-strain relationship and strength of a soil element, the settlement of foundations.

Upon the completion of the course, the students are capable of:

- 1. Describing (qualitatively and quantitatively) and classifying a given soil
- 2. Describing the stress and deformational state of a soil element using the Mohr circle.
- 3. Computing the geostatic stresses and the stresses imposed by the constructed structures
- 4. Selecting appropriate experimental tests for modeling the evolution of the stress state in various practical applications
- 5. Solving problems related to the stress-strain behavior and strength of sandy soils
- 6. Solving problems related to the stress-strain behavior and strength of clayey soils in CD, CU and UU triaxial tests
- 7. Solving problems related to immediate, consolidation and secondary compression settlements.

Prerequisites:

Instructor's data:

Name:	Panos Dakoulas
Level:	Professor
Office:	Civil Engineering, 105
Tel. – email:	24214-74161, dakoulas@uth.gr
Other tutors:	

Specific course information:

Week No.		Hours		
	Course contents	Course attendance	Preparation	
1	Introduction to Geotechnical Engineering. Soil Mechanics applications in Civil Engineering projects.	4	2	
2	Origin and formation of soils. Types of soils.	4	2	
3	Soil as a multi-phase medium. Density, porosity, degree of saturation, water content. Grain size distribution, relative density of granular soils. Problems.	4	2	
4	Atterberg limits and plasticity of clayey soils. Characterization and classification of soils. Site geotechnical investigation, examples of soil profiles. Problems. 1 st homework set.	4	5	
5	Stress in soil elements. Stress state and Mohr circle. Problems. 2 nd homework set.	4	5	
6	Geostatic stresses. Effective stress. Deformation and Mohr circle. Problems. 3nd homework set.	4	5	
7	Stress – strain relationship of soil element. One- dimensional compression, triaxial compression, simple shear, direct shear, torsion, and other tests. Application of laboratory testing in Civil Engineering projects.	4	2	
8	The concept of failure. Mohr-Coulomb failure criterion. Strength of loose and dense granular soil. The role of particle interlocking. Problems. 4 th homework set.	4	5	
9	Stress-strain relationship and strength of normally consolidated and over-consolidated clay. Excess pore water pressure development in one-dimensional compression, isotropic compression, triaxial compression and simple shear testing. Problems.	4	2	
10	Triaxial tests CU and UU. The concept of $\varphi = 0^{\circ}$. Applications in Geotechnical projects. Problems. 5th homework set.	4	5	
11	Concentrated load on elastic half-space (Boussinesq). Stresses due to concentrated and distributed loads on elastic half-space. Superposition of geostatic and external loads. Problems. 6th homework set.	4	5	
12	Foundation settlements. Design criteria. Immediate settlements. Problems.	4	2	

13	Consolidation settlements. Secondary compression settlements. Problems. 7th homework set.	4	5
14	Geotechnical applications. Problems. Review.	4	2

Additional hours for:				
Class project Examinations		Preparation for examinations	Educational visit	
	3	15	2	

Suggested literature:

- 1. Soil Mechanics, 3rd Edition, Barnes, Kleidarithmos, 2014 (distributed, in Greek)
- 2. Soil Mechanics Notes, G. Gazetas, NTUA, 2014 (distributed, in Greek)

Other textbooks

- Principles of Geotechnical Engineering, 5th edition, B. Das, PWS-Kent, 2006.
 Soil Mechanics and Foundations, 3rd edition, M. Budhu, 2010.
 An Introduction to Geotechnical Engineering, Holtz and Kovacs, Prentice-Hall, 1981.

Teaching method (select and describe if necessary - weight):			
Teaching			
		70%	
Seminars			
Demonstrations			
		5%	
Laboratory	\boxtimes		
Exercises			
		25%	
Visits at facilities			
Other (describe):			
Total		100%	

Evaluation method (select)- weight:				
	<u>written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>
Homework				
	X	0%		
Class project				
Interim examination				
Final examinations		100%		
Other (describe):				