ECTS

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM IN THE EUROPEAN UNION

(B) Course information in english

General course information:

Course title:	GR	OUNDWATER	Course code:		CE06-H06	
	HY	DRAULICS				
Credits:	5		Work load		125	
			(hours):			
Course level:	ourse level: Undergraduate		Х	Graduate 🛛		
Course type:		Mandatory	Х	Selective		
Course category:		Basic X		Orientation		
Semester:	6 Hours per week: 4					
Course objectives	Course objectives (capabilities pursued and learning results):					
The course objective is the calculation of saturated groundwater flow. The						
student develops knowledge on different approach techniques for the solution						
of flows through porous media. Upon the completion of the course, the student						
has the theoretical background to compute flows related to wells in confined						
and in water table aquifers, flow towards collector ditches, flow through the dam						
core and under the dam, etc.						
Prerequisites:						
Fluid Mechanics						
Mathematics						

Instructor's data:

Name:	Kanakoudis Vasilis		
Level:	Associate Professor		
Office:	Civil Engineering Dept.		
	University of Thessaly		
	Pedion Areos, 38334 Volos, Greece		
Tel. – email:	+30 24210 74156,		
	bkanakoud@civ.uth.gr		
Other tutors:			

Specific course information:

		Hours	
Week No.	Course contents	Course attendance	Preparation
1	Ground and groundwater characteristics. Darcy experiment and law, range of application. Problems.	4	4
2	Permeability (hydraulic conductivity), intrinsic permeability, permeameters. Applications.	4	4
3	Continuity equation. The mathematical model. Frow nets. Boundary types and conditions.	4	8
4	Analytical methods of solution. Method of separation of variables. Numerical solution of mathematical model. Finite difference method.	4	8

		Hours	
Week No.	Course contents	Course attendance	Preparation
5	Non-isotropic, non-homogeneous soils. Analog and physical models	4	8
6	Flow in confined aquifers. Flow in unconfined aquifers. Dupuit approximation.	4	8
7-8	Steady flow to channels Μόνιμη ροή προς τάφρο: a) Flow in confined aquifers. b) Flow in unconfined aquifers. Applications	8	17
9-10	Steady flow to wells/drills: a) Flow in confined aquifers. b) Flow in unconfined aquifers. Steady 2-D and axi-symmetric flow. Applications	8	17
11-12-13	Well systems. Method of images. Applications.	12	21
14	Unsteady (time dependent) groundwater flow. Seepage force and piping (tunneling) effect.	4	4

Additional hours for:				
Class project	Examinations	Preparation for examinations	Educational visit	
	3	10		

Suggested literature:

1. Papanicolaou, PN, 2007. Groundwater Hydraulics Notes, University Notes (in Greek).

2. Tolikas, DK, 2005. *Groundwater Hydraulics*. Epikentro Eds, Thessaloniki. (in Greek).

- 3. Bear, J. 1972. *Dynamics of fluids in porous media.* Elsevier.
- 4. McWhorter, DB and Sunada, DK, 1977. *Ground-water hydrology and hydraulics.* Water resources publications, P.O. Box 303, Fort Collins Colorado.
- 5. Raudkivi, AJ, and Gallander, RA, 1976. Analysis of groundwater flow. Arnold.
- 6. Todd, DK, 1976. Groundwater hydrology. Wiley.

Teaching method (select and describe if necessary - weight):				
Teaching	X	70%		
Seminars		%		
Demonstrations		%		
Laboratory		%		
Exercises	X	30%		
Visits at facilities		%		
Other (describe):		%		
Total		100%		

Evaluation method (select)- weight:					
	<u>written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>	
Homework	Х	30			
Class project					
Interim examination					
Final examinations	Х	70			
Other (describe):					