Course information in English

General course information:

Course title:	Advanced Strength of Materials		Course code:			
Credits:	5			Work load (hours):		150
Course level:		Undergraduate	\checkmark	Graduate		
Course type:		Mandatory		Selective	\checkmark	
Course catego	ry:	Basic		Orientation	\checkmark	
Semester:		9 th		Hours per week:		4
Course objectives (capabilities pursued and learning results):						
mechanical beh	avior of material			lex macroscopic mode under various loading		
Prerequisites:						
Strength of Mat	erials					
Machanica of D	براء ما ما ما معر ما بر					

Mechanics of Deformable body Theory of Elasticity

Instructor's data:

Name:	Christos Papakonstantinou		
Level:	Assistant Professor		
Office:	Civil Engineering Building, 1 st Floor		
Tel. – email:	2421074160 cpapak@uth.gr		
Other Lecturers:			

Specific course information:

Week		Hours		
No.	Course contents	Course attendance	Preparat ion	
1	Behavior of Engineering materials; 1D Macroscopic Behavior; 1-D idealized Material Behavior (Phenomenological Model Classifications)	4	4	
2	Review of Linear Elastic Behavior.	4	4	
3	Linear Viscoelastic Behavior 1-D Simple Models and the standard test procedures.	4	4	
4	1-D Complex Models, Creep Compliance & Relaxation Modulus Functions;	4	4	
5	Multi-dimensional Linear Isotropic Viscoelastic Laws Postulates from Simple Tests, Extrapolation to 3-D	4	4	
6	Non-Linear Viscoelastic Behavior in 1-D Non-Linear Viscoelastic Behavior in 3-D	4	4	
7	Introduction to Plasticity. Plasticity: 1-D Plasticity and Viscoplasticity,	4	4	
8	3-D Nonhardening plasticity Theory	4	4	
9	3-D Nonhardening plasticity Theory	4	4	
10	3-D Plasticity with Strain and Strain Rate Hardening	4	4	
11	3-D Plasticity with Strain and Strain Rate Hardening	4	4	
12	Applications to Simple Structural members: Flexure of Beams (Linear Elastic Beams, Linear Viscoelastic Beams, Non-Linear Viscoelastic Beams, Plastic Behavior of Beams)	4	4	
13	Applications to Simple Structural members: Flexure of Beams (Linear Elastic Beams, Linear Viscoelastic Beams, Non-Linear Viscoelastic Beams, Plastic Behavior of Beams)	4	4	
14	Applications to Plane-Strain, Plane-Stress	4	4	

Additional hours for:					
Class project/Homework Examinations		Preparation for examinations	Educational visit		
15	3	20			

Suggested literature:

- 1. Stephen P. Timoshenko, J.N. Goodier, Theory of Elasticity, Mc Graw Hill, 1970.
- 7. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, 1950.
- 11. I. Finnie and W. R. Heller, Creep of Engineering Materials, McGraw Hill, 1959.
- 12 I. H. Shames and F. A. Cozzarelli, *Elastic and inelastic Stress Analysis*, Taylor and Francis, 1997.

Teaching method (select and describe if necessary - weight):				
Teaching		100%		
Seminars		%		
Demonstrations		%		
Laboratory		%		
Exercises		%		
Visits at facilities		%		
Other (describe):		%		
Total		100%		

Evaluation method (select)- weight:					
	<u>Written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>	
Homework					
Class project					
Interim examination					
Final examinations	Ø	100%			
Other (describe):					