(B) Course information in English

General course information:

Course title:	Fou	ndations &	Course code:		ГК3602
	Retaining				
	Structures				
Credits:	5		Work load		121
			(hours):		
Course level:		Undergraduate	х	Graduat	te
Course type:		Mandatory	х	Selectiv	ve
Course category:		Basic	х	Orienta	tion
Semester:	7^{th}		Hours per w	eek:	4
Course objectives (capabilities pursued and learning results):					
Analysis and design of foundations and retaining structures.					

Prerequisites:

Soil Mechanics I & II

Instructor's data:

Name:	Emilios Comodromos
Level:	Professor
Office:	218
Tel. – email:	+30 24210 74143, ecomo.users.uth.gr
Other tutors:	

Specific course information:

		Hours		
Week No.	Course contents	Course attendance	Preparation	
1	General presentation of foundations and retaining structures. Short reference to limit equilibrium methods (advantages – disadvantages). Reference to the implementation of numerical methods in foundation and retaining design.	4		
2	Shallow foundations. Brief reference to methods estimating ultimate strength (description of failure mechanism – limit equilibrium) – Description of Eurocode 7 provisions. Bearing capacity under seismic loading – Reference to EAK-2000 and EC- 8 code provisions.	4	4	
3	Parametric definition of the bearing capacity envelope under the combination of vertical and horizontal loading and bending moment. Analysis and design of strip and mat foundations.	4	4	
4	Deep foundations. Pile bearing capacity under vertical loading (DIN 4014, EC-7). Single pile response under vertical loads. t-z method.	4	4	
5	Pile bearing capacity under horizontal loading (Broms method). Single pile response under horizontal loads. P-y method.	4	6	
6	Pile tests. Results elaboration, back analysis using numerical methods.	4		
7	Pile group response under vertical loading. Interaction between piles, empirical stiffness and bearing capacity factors. Application of numerical methods to define characteristic piles' and pile heads' response.	4	4	
8	Pile group response under horizontal loading. Interaction between piles, empirical stiffness and bearing capacity factors. Application of numerical methods to define characteristic piles' response.	4	4	
9	Example of a pile group under vertical and horizontal loading. Analysis and design of piles' and pile head's reinforcement.	4	6	
10	Retaining structures. Reference to earth pressures (earth pressures at rest, active, passive). Pressure variation according to displacements. Pressure variation due to seismic action. Design of	4	2	

	reinforced concrete retaining walls (flexible).		
11	Design of sheet piles retaining walls (constructive details).	4	4
12	Design of pile and diaphragm walls, with or without anchorages or struts.	4	4
13	Examples of sheet piles and diaphragm retaining structures.	4	6
14	Introduction to solving retaining problems by using numerical methods. Assumptions and basic simulation principles. Examples.	4	

Additional hours for:				
Class project	Examinations	Preparation for examinations	Educational visit	
	3	14		

Suggested literature:

Comodromos, E. (2019) *Deep foundations – Retaining Structures: limit equilibrium – numerical methods*, ISBN 978-960-478-506-3, editions Kleidarithmos, Athens (in Greek).

Recommended additional books:

- Barnes, G.E. (2005). *Soil Mechanics: Principles and Applications*. Kleidarithmos Ed., Athens (In Greek).
- Bowles, E.J. (1996). Foundation analysis and design. 5th edition, McGraw Hill, N.Y.
- Poulos, G.H. (1980). Pile foundation analysis and design. J. Wiley & Sons, N.Y.
- Tomlinson, M. J. (1994). Pile design and construction practice. E&FN Spon, London.
- Prakash, S. and Sharma, D.H. (1990). *Pile foundations in engineering practice*. J. Wiley & Sons, N.Y.

Sanglerat, G., Olivari, G. and Cambou, B. (1983). *Problèmes pratiques de mécanique des sols et de fondations*. Deuxième édition, Dunod, Paris.

Teaching method (select and describe if necessary - weight):			
Teaching	þ	60%	
Seminars	þ	5%	

Demonstrations	þ	5%
Laboratory		%
Exercises	þ	30%
Visits at facilities		%
Other (<i>describe</i>):		%
Total		100%

Evaluation method (select) - weight:					
	written	<u>%</u>	<u>Oral</u>	<u>%</u>	
Homework					
Class project					
Interim examination					
Final examinations		100			
Other (<i>describe</i>):					