ΕCTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ

(B) Course information in English

General course information:

Course title:	Computational Geotechnical Engineering		Course code:		ГЕ0400
Credits:	5		Work load (he	ours):	140
Course level:		Undergraduate	\checkmark	Graduat	e 🗌
Course type:		Mandatory	\checkmark	Selective	9
Course category:		Basic		Orientat	ion 🗹
Semester:	8 th		Hours per we	ek:	4
Course objectives (capabilities pursued and learning results):					

The course objective is the familiarization and implementation of numerical methods in solving geotechnical engineering problems. Comparison to the results derived using conventional methods of limit equilibrium. The learning results are the comprehension and implementation of fundamental simulation principles.

Prerequisites:

Solid Mechanics Soil Mechanics I, II Foundations & Retaining Structures

Instructors' data:

Name:	Polynikis Vazouras
Level:	Teaching Assistant
Office:	
Tel. – email:	pvazour@yahoo.gr
Other tutors:	

Specific course information:

Week No.		Hours		
	Course contents	Course attendance	Preparation	
1	Principles of a continuous problem approach. Methods used for solving simple and complex geotechnical problems.	4	2	
2	The notion of master elements. Finite element, and finite difference methods. Formation of shape and interpolation functions of master elements.	4	2	
3	Matrix equations. Definition of stiffness matrix of a uniform isotropic body. Integration by Gauss.	4	4	
4	Conversion of general loading to nodal loads. Establishment of stress field - initial stress condition.	4	4	
5	Fundamental principles of discretization and simulation of typical geotechnical problems. Stiffness matrix assembly.	4	4	
6	Linear elasticity assumption. Constitutive equations of elastic isotropic medium.	4	4	
7	Limits and conditions in applying linear elastic analysis. Non- linear behavior. Failure criteria and failure surfaces.	4	4	
8	Introduction to simulation of post-elastic behavior. Analysis of a discontinuum body and the effect of discontinuities. Distinct element method.	4	4	
9	Example of calculating soil settlements and strains.	4	4	
10	Example of steady-stage seepage.	4	4	
11	Example of soil and rock slope stability.	4	5	
12	Examples of a foundation, retaining wall, and embankment	4	5	
13	Example of a tunnel stability.	4	5	
14	Example of a dam simulation.	4	5	

Additional hours for:				
Class project	Examinations	Preparation for examinations	Educational visit	
	3	25		

Suggested literature:				
1.	Comodromos, M.A. (2009). Numerical methods in geomechanics – Soil-Structures Interaction.			
	Klidarithmos ed., Athens (in Greek).			
2.	Comodromos, M.A. (2019). Foundations – Retaining Structures: limit equilibrium –numerical			
	methods,. Klidarithmos ed., Athens (in Greek).			
3.	Bathe, K.J. and Wilson, E.L. (1976). Numerical Methods in Finite Element Analysis. Prentice-			
	Hall, Englewood Cliffs, NJ.			
4.	Chen, W.F. (1982). Plasticity in Reinforced Concrete. McGraw-Hill Book Co., New York, N.Y.,			
	474 рр.			
5.	Chen, W.F, &Baladi,G.Y. (1986). Soil Plasticity - Theory and Implementation. Elsevier Science			
	Publishing Company, Inc. NY.			
6.	Desai, C.S. and Abel, F.J. (1972). Introduction to the Finite Element Method. A Numerical			
	Method for Engineering Analysis. Van Nostrand Reinhold Company - N.Y.			
7.	Desai, C.S. (1977). Soil-Structure Interaction and Simulation Problems. In Finite Element in			
	Geomechanics, ed. Gudehus G., John Wiley & Sons, pp. 209-250.			
8.	Desai, C.S. & Christian, J.T. (1977). Numerical Methods in Geotechnical Engineering. NAFEMS			
	(1992). Introduction to nonlinear finite element analysis. Glasgow:			
9.	NAFEMS (1992). Introduction to nonlinear finite element analysis. Glasgow: NAFEMS (edited			
	by E. Hinton).			
10.	Oden, J.T. (1972). Finite Elements of Continua. McGraw-Hill Co., N.Y.			
11.	Owen, D.R.J. & Hinton, E., (1980). Finite Elements in Plasticity: Theory and Practice.			
12.	Salencon, J. (1974). Théorie de la Plasticité pour les Applications à la Mécanique des Sols.			
40	Edit. Eyrolles, Paris.			
13.	Schotleid, A.N. & Wroth, C.P. (1968). Critical-State Soil Mechanics. McGraw-Hill Book Co.,			
4.4	London.			
14.	Smith, I. M. & Griniths, D. V. (1988). Programming the linite element method. 2nd edition, New			
15	YOR, JOHN WILEY & SONS LTC.			
15.	Zienkiewicz, O.C., (1977). The Finite Element Method. 31d Edition, McGraw-Hill Book Co., New York			
	TOIK.			
Rela	ated scientific journals:			
1.	Geotechnique (ISSN 0016-8505)			
2.	Journal of Geotechnical and Geoenvironmental Engineering, ASCE (ISSN: 1090-0241)			
3.	International Journal for Numerical and Analytical Methods in Geomechanics (ISSN:1096-9853)			
4.	Canadian Geotechnical Journal (ISSN: 0008-3674)			
5.	Computers & Geotechnics (ISSN: 0266-352X)			
6.	Acta Geotechnica (ISSN: 1861-1125)			
7.	Soils and Foundations (ISSN: 0038-0806)			

Soils and Foundations (ISSN: 0038-0806)
Geotechnical and Geological Engineering (ISSN: 0960-3182)

Teaching method (select and describe if necessary - weight):			
Teaching		50%	
Seminars		%	
Demonstrations		%	
Laboratory		%	
Exercises		50%	
Visits at facilities		%	
Other (describe):		%	
Total		100%	

Evaluation method (select) - weight:				
	<u>written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>
Homework				
Class project				
Interim examination				
Final examinations		100		
Other (describe):				