ECTS

EUROPEAN CREDIT TRANSFER SYSTEM

Course information in english

General course information:

Course title:	Exp	perimental	Course code:		YΔ0900	
	Hyo	Hydraulics				
Credits:	5		Work load		114	
			(hours):			
Course level:		Undergraduate	\checkmark	Graduate 🛛		
Course type:		Mandatory	$\overline{\mathbf{A}}$	Selective		
Course category:		Basic		Orienta	ntion 🗹	
Semester:	8 0		Hours per v	week:	4 hours	
Course objectives (capabilities pursued and learning results):						
The objective is the contact of the student with the experiment, i.e. with the						
experimental arrangement, the measurement and analysis of experimental						
data. The student becomes familiar with dimensional analysis and hydraulic						
similarity theory, so that he can design an experiment or a laboratory model.						
Also, he is introduced to measurement and data acquisition techniques, along						
with flow visualization methods, so that they can be used either in the modeling						

of complex flows for research purposes, or in the model design of applied

research applications. **Prerequisites:**

Fluid mechanics

Applied Hydraulics

Instructor's data:

Name:	Evangelos Keramaris		
Level:	Assistant Professor		
Office:	Civil Engineering Faculty		
	University of Thessaly		
	Pedion Areos, 38334 Volos, Greece		
	Tel. 24210-74140		
Tel. – email:	ekeramaris@civ.uth.gr		
Other tutors:	-		

Specific course information:

		Hours		
WEEK NO.	Course contents	Course attendance	Preparation	
1	Introduction. Dimensional analysis, Buckingham П-theorem.	4		
2	Non – dimensional Navier-Stokes equations, characteristic dimensionless numbers	4	4	
3	Full (dynamic) and partial (kinematic or geometric) similarity. Reynolds and Froude similarity.	4	4	
4	Theory and implementation of hydraulic laboratory models.	4	4	
5	Measurement of density, kinematic viscosity and hydrostatic pressure of liquids. Static flow pressure measurement. Velocity measurements. Pilot tube. Discharge measurement in pipes and open channels	4		
6	Error analysis, experimental error estimates. Statistical analysis of experimental data.	4	4	
7	Turbulence theory, response of measuring devices, spectra and data acquisition in turbulent flows, Nyquist theorem, measurements.	4		
8	Hot-wire anemometry. Optical techniques. Laser doppler anemometry, particle image velocimetry (PIV)	4		
9	Visit to hydraulics laboratory. Display of the use of measurement devices as well as experiments from Diploma and Masters Theses.	4		
10	Experiment on energy losses in pipe flow.	4	6	
11	Experiment on the development of boundary layer in pipes, via Pitot tube velocimetry.	4	6	
12	Measurement of the velocity distribution along the axis and across a turbulent air jet.	4	6	
13	Experiment in a 5m. long open channel. Free surface profile and hydraulic jump measurement. Use of sharp crested weir and sluice gate for flow control	4	6	
14	Experiment of the discharge time of a tank	4	6	

Additional hours for:				
Class project	Examinations	Preparation for examinations	Educational visit	
20	2	10		

Suggested literature:

1. Experimental hydraulics, Notes by P. Papanicolaou

2. Handouts from Greek and international bibliography

3. Bergeles, G, Papantonis, D και Tsangaris, S, 1998. *Technical measurements of fluid* 630 *mechanics parameters.* Symeon Editions, Athens. (In Greek)

4. Bendat, JS, and Piersol, AG, 1971. *Random data: Analysis and measurement procedures.* Wiley.

5. Drain, LE, 1980. The laser-Doppler technique. Wiley.

6. Goldstein, RJ, Ed. 1996. *Fluid mechanics measurements.* Taylor and Francis.

7. Japan society of mechanical engineers, (Ed.) 1988. *Visualized flow.* Pergamon.

8. Perry, AE, 1982. Hot wire anemometry. Clarendon Press.

9. Raffel, M, Willert, C, and Kompenhans, J, 1997. *Particle image velocimetry*. Springer.

10. Sharp, JJ, 1981. Hydraulic modeling. Butterworths.

Teaching method (select and describe if necessary - weight):				
Teaching				
		40%		
Seminars				
		10%		
Demonstrations				
		%		
Laboratory				
		40%		
Exercises				
		10%		
Visits at facilities				
		%		
Other (describe):				
		%		
Total		100%		

Evaluation method (select)- weight:				
	<u>written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>
Homework				
Class project		20	N	10
Interim examination		20		
Final examinations		50		
Other (describe):				