title:	Course Structural Dynamics I Course code: Γ		ГК4000			
Credits:		6		Work	load (hours):	153
Course lev	el:	Undergradua	Undergraduate			
Course typ	e:	Mandatory		\checkmark	Selective	
Course cat	egory:	Basic	\checkmark		Orientation	
Semester:		8^{th}		Hours week:	-	4
Course obj	ectives (ca	apabilities pursu	ued and	learnin	ng results):	
engineering Furthermore	employment, the class p	students' technica at or advanced stud provides introducti ong learning. Upor	dies. ion and ex			

Static Structural Analysis, and Matrix Structural Analysis Linear Algebra (e.g., vectors, matrices, determinants). Ordinary Differential Equations

Instructor's data:

Name:	Konstantinos Tzaros	
Level:	Dr. Civil Engineer, Adjunct Lecturer	
Office:	Laboratory of Structural Analysis and	
	Design, Civil Engineering Faculty	
	University of Thessaly	

	Pedion Areos, 38334 Volos, Greece
Tel. – email:	2421074181 - ktzaros@civ.uth.gr
Other tutors:	

Specific course information:

Week		Hours		
No.	Course contents	Course attendance	Preparation	
1	 Introduction to the Dynamics of Structures Inertia forces, dynamic loads and Second Newton's law. The D' Alembert's principle. Differential equation of motion for a beam in bending. Dynamic models of structural systems 	4	6	
2	 Equation of motion for Single Degree of Freedom systems (SDOF) Stiffness, damping and inertia in dynamic systems. Calculation of the lateral stiffness of framed structures. Static condensation. 	4	6	
3	 Dynamic Response of SDOF. Free vibration of undamped systems. Frequency and period of a SDOF system. 	4	6	
4	 Viscously damped free vibration Undamped Forced Vibrations, Response to harmonic excitation 	4	6	
5	 Damped Forced Vibrations, Response to harmonic excitation. Forced vibrations for accidental loading. The Duhamel Integral. 	4	6	
6	 Periodic and aperiodic loading . Impulse Response . "Static" loading. Long and short duration loadings. 	4	6	
7	Seismic response of SDOF≻ Ground motion.≻ Equivalent seismic loads.	4	6	

	Elastic and inelastic spectrums.		
8	 Design spectrums. Design spectrums according to Greek codes and EC8. The equivalent lateral static method. Base shear and resultant design forces. 	4	6
9	 Dynamic Response of MDOF. > Introduction to MDOF structural systems. > Modelling MDOF structural systems. > Stiffness matrix, mass matrix and damping matrix. 	4	6
10	 Free vibration of MDOF systems. The dynamic eigenvalue problem. Dynamic properties. Eigen frequencies, eigen periods, eigen vectors, eigenmodes and normalized modes. 	4	6
11	 Forced vibrations of MDOF structural systems. The Modal Superposition Method. 	4	6
12	 Seismic response of MDOF. > Ground motion. > Equations of motions for ground shaking. > Equivalent seismic loads. 	4	4
13	 Seismic codes according to Greek and European regulations. Equivalent lateral static method. 	4	4
14	> Response spectrum method.	4	8

Additional hours for:				
Class project	Examinations	Preparation for examinations	Educational visit	
	3	6		

Suggested literature:				
 Ι.Θ. Κατσικαδέλης «Δυναμική Ανάλυση των Κατασκευών Θεωρία και Εφαρμογές», 				
Συμμετρία, 2012 (ISBN 978-960-266-352-3))				
> Anil Chopra, Dynamics of Structures, Prentice Hall, 3 rd Edition				
Other Texts				

Leonard Meirovitch, *Fundamentals of Vibrations*, McGraw Hill, 2001. Clough, R. W. and Penzien, J., *Dynamics of Structures*, McGraw Hill, 2nd Edition, 1993. D.J. Inman, *Engineering Vibration*, Prentice Hall, 1996. Humar, J., Dynamics of Structures, Taylor and Francis Ltd.3rd rev. Edition, 2012. Greek seismic code EAK 2000.

Teaching method (select and describe if necessary - weight):					
Teaching	\checkmark	100%			
Seminars		%			
Demonstrations		%			
Laboratory		%			
Exercises		%			
Visits at facilities		%			
Other (describe):		%			
Total		100%			

Evaluation method (select)	- weight:			
	<u>written</u>	<u>%</u>	<u>Oral</u>	<u>%</u>
Homework			ф	
Class project			<u></u>	
Interim examination			<u></u>	
Final examinations		100		
Other (describe):			ф.	