ECTS

(B) Course information in English

General course information:

Course title:	Ana Sur	alysis of face	Course coo	le:	ΔΟ1501	
Credits:	6		Work load (hours):		144	
Course level:		Undergraduate		Gradu	ate	
Course type:		Mandatory		Select	ive	X
Course category:		Basic		Orient	ation	X
Semester:		9 th	Hours per v	week:	4	
Course objectives (capabilities pursued and learning results):						

Introduction to the properties and the mechanics of surface structures and presentation of analytical and numerical methods for evaluating the developed stresses and deformations under different types of loading.

Prerequisites:

- Differential equations
- Solid Mechanics
- Static I

Instructor's data:

Name:	Stylianos Pardalopoulos
Level:	Teaching Staff
Office:	
Tel. – email:	pardalopoulos@uth.gr
Other tutors:	-

Specific course information:

Week No.	Course contents	Ho	ours
		Course	Preparation
		attendance	
1	Introduction – Typology of	4	2
	surface structures, Bending		
	moments, Displacements,		
	Deformations, Stresses,		
	Stress Resultants.		
2	Equations of equilibrium,	4	3
	Inconsistencies of plate		
	theory, Differential equation		
	for plates.		
3	Plane transformations	4	3
	(slopes, curvature,		
	moments), Boundary		
	conditions, Numerical		
	examples.		
4	The Navier method,	4	3
	Numerical examples.		
5	The Levy method, Numerical	4	3
	examples.		
6	Practical/engineering	4	3
	solution methods for plates,		
	The Markus and Czerny		
	methods, Numerical		
	example-comparison with		
	analytical methods.		
7	Continuous plates with	4	3
	varying span-length, The		
0	Cross method for plates.		
8	Surface structures with in-	4	3
	plane loading, Boundary		
	conditions. Differential		
0	Numerical examples of	1	2
9	Numerical examples of	4	3
	disce utilizing analytical		
	methods		
10	Special types of surface	Δ	3
10	structures: Plates of infinite		
	length Circular plates		
	Circular discs		
11	Introduction to the Finite	4	3
	Element (FE) method for		
	analyzing surface structures.		
	Triangular and Quadrilateral		
	plate-shell elements.		

12	Analysis of R.C. building plates utilizing FE and practical methods. Evaluation of the analyses results.	4	3
13	Analysis of masonry structures utilizing FE and practical methods. Evaluation of the analyses results.	4	3
14	Analysis of complex surface structures utilizing FE and practical methods. Evaluation of the analyses results.	4	2

Additional hours for:			
Class project	Examinations	Preparation for examinations	Educational visit
30	3	15	

Suggested literature:

- 1. Makarios T.K., Manolis G.D. (2018). "Surface structures: Discs, Plates and Shells", 2018, Tziolas Publications (in Greek).
- 2. Sapountzakis E.I. (2005). "Theory of Plates", NTUA Publications (in Greek).
- 3. Valiasis T. (2000). "Surface Structures-Theory and solution methods", Ziti Publications (in Greek).
- 4. Szilard R. (1974). «Theory and analysis of plates, Classical and numerical methods», John Wiley , ISBN: 978-0471429890
- 5. Timoshenko S., Woinowsky-Krieger S. (1959). «Theory of plates and shells», McGraw Hill.
- 6. Ventsel E., Krauthammer T. (2001). «Thin plates and shells. Theory, analysis and applications», Marcel Dekker Inc., ISBN:0-8247-0575-0.

Teaching method (select and describe if necessary - weight):			
Teaching	\boxtimes	60 %	
Seminars			
Demonstrations			
Laboratory	\boxtimes	20 %	
Exercises	\boxtimes	20 %	
Visits at facilities			
Other (describe):			
Total		100%	

Evaluation method (select)- weight:				
	Written	%	Oral	%
Homework				
Class project	X	25%	X	25%
Interim examination				
Final examinations	\boxtimes	50%		
Other (describe):				